Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.394
Filtrar
1.
Luminescence ; 39(4): e4746, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644460

RESUMO

The use of photochromism to increase the credibility of consumer goods has shown great promise. To provide mechanically dependable anticounterfeiting nanofibres, it has also been critical to improve the engineering processes of authentication patterns. Mechanically robust and photoluminescent electrospun poly(ethylene oxide)/glass (PGLS) nanofibres (150-350 nm) immobilized with nanoparticles of lanthanide-doped aluminate (NLA; 8-15 nm) were developed using electrospinning technology for anticounterfeiting purposes. The provided nanofibrous membranes changed colour from transparent to green when irradiated with ultraviolet light. By delivering NLA with homogeneous distribution without aggregations, we were able to keep the nanofibrous membrane transparent. When excited at 365 nm, NLA@PGLS nanofibres showed an emission intensity at 517 nm. The hydrophobicity of NLA@PGLS nanofibres improved by raising the pigment concentration as the contact angle was increased from 146.4° to 160.3°. After being triggered by ultraviolet light, NLA@PGLS showed quick and reversible photochromism without fatigue. It was shown that the suggested method can be applied to reliably produce various anticounterfeiting materials.


Assuntos
Vidro , Nanofibras , Polietilenoglicóis , Raios Ultravioleta , Nanofibras/química , Polietilenoglicóis/química , Vidro/química , Tamanho da Partícula , Propriedades de Superfície
2.
Artigo em Inglês | MEDLINE | ID: mdl-38663416

RESUMO

The effect of negative chemical pressure with the substitution of transition metal V in an itinerant helimagnetically ordered MnSi, Mn1-xVxSi withx= 0-0.1, is explored using dc and ac-susceptibilities. With increasingx, the manifestations are unaffected crystal structure with increasing unit cell volume, suppression of long-range magnetic order, weakening of itinerant character and reduced spin-cooperative phenomenon. The emergence of spin-glass behaviour forx≥ 0.1 intervenes in the occurrence of quantum phase transition. The constructed concentration-temperaturex-Tphase diagram illustrates the substitution-driven changes in the magnetism of MnSi. Further, the study suggests that the presence of a precursor state can favour the formation of spin-textures in magnetically ordered compositions 0

3.
BMC Oral Health ; 24(1): 457, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622649

RESUMO

BACKGROUND: Self-glazed zirconia (SZ) restorations are made by a novel additive three-dimensional gel deposition approach, which are suitable for a straightforward completely digital workflow. SZ has recently been used as minimally invasive veneer, but its clinical outcomes have not been clarified yet. This study aimed to evaluate the preliminary clinical outcomes of SZ veneers compared with the widely used lithium disilicate glass-ceramic veneers made by either pressing (PG) or milling (MG) process. METHODS: Fifty-six patients treated with SZ, PG, and MG veneers by 2 specialists between June 2018 and October 2022 were identified. Patients were recalled for follow-up at least 1 year after restoration. Clinical outcomes were assessed by 2 independent evaluators according to the modified United States Public Health Service (USPHS) criteria. Overall patient satisfaction was assessed using visual analogue scale (VAS), and analyzed by one-way ANOVA. Chi-square test was applied to compare the difference in the success and survival rates among the 3 groups. RESULTS: A total of 51 patients restored with 45 SZ, 40 PG, and 41 MG veneers completed the study, with a patient dropout rate of 8.9%. Mean and standard deviation of follow-up period was 35.0 ± 14.7 months. All restorations performed well at baseline, except for 2 SZ veneers with mismatched color (rated Bravo). During follow-up, marginal discrepancy (rated Bravo) was found in 4 MG veneers and 1 PG veneer, and partially fractured (rated Charlie) was found in another 2 PG veneers. The survival rate of SZ, PG, and MG veneers was 100%, 95%, and 100%, with a success rate of 95.56%, 92.50%, and 90.24%, respectively, none of which were significantly different (p = 0.099 and 0.628, respectively). The mean VAS score of SZ, PG, and MG was 95.00 ± 1.57, 93.93 ± 2.40, and 94.89 ± 2.00 respectively, without significant difference (p > 0.05). CONCLUSION: SZ veneers exhibited comparable preliminary clinical outcomes to PG and MG veneers, which could be considered as a feasible option for minimally invasive restorative treatment.


Assuntos
Falha de Restauração Dentária , Facetas Dentárias , Nitrilas , Zircônio , Humanos , Estudos Retrospectivos , Cerâmica , Teste de Materiais , Desenho Assistido por Computador
4.
J Dent Res ; 103(5): 526-535, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581240

RESUMO

Bioglass 45S5, a silica-based glass, has pioneered a new field of biomaterials. Bioglass 45S5 promotes mineralization through calcium ion release and is widely used in the dental field, including toothpaste formulations. However, the use of Bioglass 45S5 for bone grafting is limited owing to the induction of inflammation, as well as reduced degradation and ion release. Phosphate-based glasses exhibit higher solubility and ion release than silica-based glass. Given that these glasses can be synthesized at low temperatures (approximately 1,000°C), they can easily be doped with various metal oxides to confer therapeutic properties. Herein, we fabricated zinc- and fluoride-doped phosphate-based glass (multicomponent phosphate [MP] bioactive glass) and further doped aluminum oxide into the MP glass (4% Al-MP glass) to overcome the striking solubility of phosphate-based glass. Increased amounts of zinc and fluoride ions were detected in water containing the MP glass. Doping of aluminum oxide into the MP glass suppressed the striking dissolution in water, with 4% Al-MP glass exhibiting the highest stability in water. Compared with Bioglass 45S5, 4% Al-MP glass in water had a notably reduced particle size, supporting the abundant ion release of 4% Al-MP glass. Compared with Bioglass 45S5, 4% Al-MP glass enhanced the osteogenesis of mouse bone marrow-derived mesenchymal stem cells. Mouse macrophages cultured with 4% Al-MP glass displayed enhanced induction of anti-inflammatory M2 macrophages and reduced proinflammatory M1 macrophages, indicating M2 polarization. Upon implanting 4% Al-MP glass or Bioglass 45S5 in a mouse calvarial defect, 4% Al-MP glass promoted significant bone regeneration when compared with Bioglass 45S5. Hence, we successfully fabricated zinc- and fluoride-releasing bioactive glasses with improved osteogenic and anti-inflammatory properties, which could serve as a promising biomaterial for bone regeneration.


Assuntos
Substitutos Ósseos , Cerâmica , Fluoretos , Vidro , Zinco , Fluoretos/química , Animais , Camundongos , Cerâmica/química , Substitutos Ósseos/química , Vidro/química , Osteogênese/efeitos dos fármacos , Materiais Biocompatíveis/química , Teste de Materiais
5.
ACS Sens ; 9(4): 2050-2056, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38632929

RESUMO

DNA carries genetic information and can serve as an important biomarker for the early diagnosis and assessment of the disease prognosis. Here, we propose a bottom-up assembly method for a silica nanowire-filled glass microporous (SiNWs@GMP) sensor and develop a universal sensing platform for the ultrasensitive and specific detection of DNA. The three-dimensional network structure formed by SiNWs provides them with highly abundant and accessible binding sites, allowing for the immobilization of a large amount of capture probe DNA, thereby enabling more target DNA to hybridize with the capture probe DNA to improve detection performance. Therefore, the SiNWs@GMP sensor achieves ultrasensitive detection of target DNA. In the detection range of 1 aM to 100 fM, there is a good linear relationship between the decrease rate of current signal and the concentration of target DNA, and the detection limit is as low as 1 aM. The developed SiNWs@GMP sensor can distinguish target DNA sequences that are 1-, 3-, and 5-mismatched, and specifically recognize target DNA from complex mixed solution. Furthermore, based on this excellent selectivity and specificity, we validate the universality of this sensing strategy by detecting DNA (H1N1 and H5N1) sequences associated with the avian influenza virus. By replacing the types of nucleic acid aptamers, it is expected to achieve a wide range and low detection limit sensitive detection of various biological molecules. The results indicate that the developed universal sensing platform has ultrahigh sensitivity, excellent selectivity, stability, and acceptable reproducibility, demonstrating its potential application in DNA bioanalysis.


Assuntos
Técnicas Biossensoriais , Vidro , Limite de Detecção , Nanofios , Dióxido de Silício , Vidro/química , Dióxido de Silício/química , Nanofios/química , Técnicas Biossensoriais/métodos , DNA/química , Porosidade , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , DNA Viral/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação
6.
Artigo em Inglês | MEDLINE | ID: mdl-38662533

RESUMO

Aquatic actuators based on the light-to-work conversion are of paramount significance for the development of cutting-edge fields including robots, micromachines, and intelligent systems. Herein, we report the design and synthesis of near-infrared light-driven hydrogel actuators through loading with lightweight polydopamine-modified hollow glass microspheres (PDA-HGMPs) into responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogels. These PDA-HGMPs can not only function as an excellent photothermal agent but also accelerate the swelling/desewlling of hydrogels due to their reconstruction for polymer gel skeleton, which speeds up the response rate of hydrogel actuators. The resulting hydrogel actuator shows controlled movements under light illumination, including complex self-propellant and floating/sinking motions. As the proof-of-concept demonstrations, a self-sensing robot is conceptualized by integrating the PDA-HGMP-containing hydrogel actuator with an ultrathin and miniature pressure sensor. Hopefully, this work can offer some important insights into the research of smart aquatic soft actuators, paving the way to the potential applications in emerging fields including micromachines and intelligent systems.

7.
Proc Natl Acad Sci U S A ; 121(18): e2400200121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38662550

RESUMO

Traditional metallic glasses (MGs), based on one or two principal elements, are notoriously known for their lack of tensile ductility at room temperature. Here, we developed a multiprincipal element MG (MPEMG), which exhibits a gigapascal yield strength, significant strain hardening that almost doubles its yield strength, and 2% uniform tensile ductility at room temperature. These remarkable properties stem from the heterogeneous amorphous structure of our MPEMG, which is composed of atoms with significant size mismatch but similar atomic fractions. In sharp contrast to traditional MGs, shear banding in our glass triggers local elemental segregation and subsequent ordering, which transforms shear softening to hardening, hence resulting in shear-band self-halting and extensive plastic flows. Our findings reveal a promising pathway to design stronger, more ductile glasses that can be applied in a wide range of technological fields.

8.
Radiol Case Rep ; 19(6): 2100-2105, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38645548

RESUMO

A 74-year-old woman, who had been receiving olaparib for the treatment of ovarian cancer for more than a year, visited the emergency department complaining of a fever that had lasted for 1 month. She had been taking antipyretics and antibiotics for her fever, but without any effect. Although she had no symptoms other than fever, she had stopped taking olaparib for 1 week before her visit because she had developed anemia caused by myelosuppression from olaparib. After discontinuing olaparib, her maximum body temperature decreased. On admission, chest X-ray revealed no abnormalities, but chest CT showed diffuse ground-glass opacities. Chest CT taken 5 days later showed partial improvement; therefore, we diagnosed her with interstitial lung disease (ILD) associated with olaparib. After short-term steroid treatment, the ground-glass opacities disappeared, and the patient became afebrile. The CT scan taken for tumor evaluation 2 days before the onset of fever showed a few centrilobular nodular opacities and small patchy ground-glass opacities. These findings could indicate early lesions of ILD, but they seemed inconspicuous and nonspecific, and it might have been difficult to diagnose ILD then. To date, few cases of ILD associated with olaparib have been reported. However, based on previous reports, fever is often seen, and CT findings mainly comprise diffuse ground-glass opacities, and in some cases, centrilobular nodular shadows. Thus, in conjunction with the findings of the present case, these characteristics may be representative of olaparib-induced ILD.

9.
BMC Oral Health ; 24(1): 484, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649931

RESUMO

BACKGROUND: Root caries is preventable and can be arrested at any stage of disease development. The aim of this study was to investigate the potential mineral exchange and fluorapatite formation within artificial root carious lesions (ARCLs) using different toothpastes containing 5,000 ppm F, 1,450 ppm F or bioactive glass (BG) with 540 ppm F. MATERIALS AND METHODS: The crowns of each extracted sound tooth were removed. The remaining roots were divided into four parts (n = 12). Each sample was randomly allocated into one of four groups: Group 1 (Deionised water); Group 2 (BG with 540 ppm F); Group 3 (1,450 ppm F) and Group 4 (5,000 ppm F). ARCLs were developed using demineralisation solution (pH 4.8). The samples were then pH-cycled in 13 days using demineralisation solution (6 h) and remineralisation solution (pH 7) (16 h). Standard tooth brushing was carried out twice a day with the assigned toothpaste. X-ray Microtomography (XMT) was performed for each sample at baseline, following ARCL formation and after 13-day pH-cycling. Scanning Electron Microscope (SEM) and 19F Magic angle spinning nuclear magnetic resonance (19F-MAS-NMR) were also performed. RESULTS: XMT results showed that the highest mineral content increase (mean ± SD) was Group 4 (0.09 ± 0.05), whilst the mineral content decreased in Group 1 (-0.08 ± 0.06) after 13-day pH-cycling, however there was evidence of mineral loss within the subsurface for Groups 1, 3 and 4 (p < 0.05). SEM scans showed that mineral contents within the surface of dentine tubules were high in comparison to the subsurface in all toothpaste groups. There was evidence of dentine tubules being either partially or completely occluded in toothpaste groups. 19F-MAS-NMR showed peaks between - 103 and - 104ppm corresponding to fluorapatite formation in Groups 3 and 4. CONCLUSION: Within the limitation of this laboratory-based study, all toothpastes were potentially effective to increase the mineral density of artificial root caries on the surface, however there was evidence of mineral loss within the subsurface for Groups 1, 3 and 4.


Assuntos
Cárie Radicular , Cremes Dentais , Microtomografia por Raio-X , Projetos Piloto , Cremes Dentais/uso terapêutico , Humanos , Apatitas/uso terapêutico , Apatitas/análise , Concentração de Íons de Hidrogênio , Fluoretos/uso terapêutico , Remineralização Dentária/métodos , Cariostáticos/uso terapêutico , Técnicas In Vitro , Microscopia Eletrônica de Varredura
10.
Front Oral Health ; 5: 1330944, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650760

RESUMO

Background: Cytocompatibility should always be considered, especially if the surface of treated carious lesions is close to soft tissue or is accidentally exposed to the oral soft tissue by the clinician. Methods: The aim of the present study was to compare the cytocompatibility of two fluoride-containing liquids and two resin-containing restorative materials with buccal mucosa fibroblasts. The fluoride-containing materials were silver diamine fluoride and water-based silver fluoride. Results: The statistical analysis was completed by comparing the positive control growth of the buccal mucosa fibroblasts to the growth of cells exposed to various materials. The one-way ANOVA with Tukey's HSD result was completed. All the assessed materials compared to the control wells for both the 24 and 48 h time intervals indicated a significant cytocompatibility result, except for the test wells with Stela (SDI) at the 24 h time interval. There was no significant difference between the step 2 liquids and the two dental materials in cytocompatibility at the 24 h interval. All four materials indicated no significant differences between the cytocompatibility of any dental materials for 48 h. Conclusion: The cytocompatibility assessment for Riva Star and Riva Star Aqua with the direct method in a full dispensing drop is not viable for step 1 of the fluoride-containing liquids. The use of Stela Light Cure is a suitable material that will be in contact with buccal mucosa as it showed potential for increased cytocompatibility compared to Riva Light Cure. Riva Star Aqua is more cytocompatible than Riva Star.

11.
Tomography ; 10(4): 574-608, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38668402

RESUMO

Interlobular septa thickening (ILST) is a common and easily recognized feature on computed tomography (CT) images in many lung disorders. ILST thickening can be smooth (most common), nodular, or irregular. Smooth ILST can be seen in pulmonary edema, pulmonary alveolar proteinosis, and lymphangitic spread of tumors. Nodular ILST can be seen in the lymphangitic spread of tumors, sarcoidosis, and silicosis. Irregular ILST is a finding suggestive of interstitial fibrosis, which is a common finding in fibrotic lung diseases, including sarcoidosis and usual interstitial pneumonia. Pulmonary edema and lymphangitic spread of tumors are the commonly encountered causes of ILST. It is important to narrow down the differential diagnosis as much as possible by assessing the appearance and distribution of ILST, as well as other pulmonary and extrapulmonary findings. This review will focus on the CT characterization of the secondary pulmonary lobule and ILST. Various uncommon causes of ILST will be discussed, including infections, interstitial pneumonia, depositional/infiltrative conditions, inhalational disorders, malignancies, congenital/inherited conditions, and iatrogenic causes. Awareness of the imaging appearance and various causes of ILST allows for a systematic approach, which is important for a timely diagnosis. This study highlights the importance of a structured approach to CT scan analysis that considers ILST characteristics, associated findings, and differential diagnostic considerations to facilitate accurate diagnoses.


Assuntos
Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Diagnóstico Diferencial , Pneumopatias/diagnóstico por imagem , Pneumopatias/patologia , Pulmão/diagnóstico por imagem , Pulmão/patologia
12.
ACS Appl Mater Interfaces ; 16(15): 19672-19680, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38576132

RESUMO

Traditional multilayer antireflection (AR) surfaces are of significant importance for numerous applications, such as laser optics, camera lenses, and eyeglasses. Recently, technological advances in the fabrication of biomimetic AR surfaces capable of delivering broadband omnidirectional high transparency combined with self-cleaning properties have opened an alternative route toward realization of multifunctional surfaces which would be beneficial for touchscreen displays or solar harvesting devices. However, achieving the desired surface properties often requires sophisticated lithography fabrication methods consisting of multiple steps. In the present work, we show the design and implementation of mechanically robust AR surfaces fabricated by a lithography-free process using thermally dewetted silver as an etching mask. Both-sided nanohole (NH) surfaces exhibit transmittance above 99% in the visible or the near-infrared ranges combined with improved angular response at an angle of incidence of up to θi = 60°. Additionally, the NHs demonstrate excellent mechanical resilience against repeated abrasion with cheesecloth due to favorable redistribution of the shearing mechanical forces, making them a viable option for touchscreen display applications.

13.
Acad Radiol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38627129

RESUMO

RATIONALE AND OBJECTIVES: To quantify intratumor heterogeneity (ITH) in clinical T1 stage lung adenocarcinoma presenting as pure ground-glass nodules (pGGN) on computed tomography, assessing its value in distinguishing histological subtypes. MATERIALS AND METHODS: An ITH score was developed for quantitative measurement by integrating local radiomics features and global pixel distribution patterns. Diagnostic efficacy in distinguishing histological subtypes was evaluated using receiver operating characteristic curve analysis and area under the curve (AUC) values. The ITH score's performance was compared to those of conventional radiomics (C-radiomics), and radiological assessments conducted by experienced radiologists. RESULTS: The ITH score demonstrated excellent performance in distinguishing lepidic-predominant adenocarcinoma (LPA) from other histological subtypes of clinical T1 stage lung adenocarcinoma presenting as pGGN. It outperformed both C-radiomics and radiological findings, exhibiting higher AUCs of 0.784 (95% confidence interval [CI]: 0.742-0.826) and 0.801 (95% CI: 0.739-0.863) in the training and validation cohorts, respectively. The AUCs of C-radiomics were 0.764 (95% CI: 0.718-0.810, DeLong test, p = 0.025) and 0.760 (95% CI: 0.692-0.829, p = 0.023) and those of radiological findings were 0.722 (95% CI: 0.673-0.771, p = 0.003) and 0.754 (95% CI: 0.684-0.823, p = 0.016) in the training and validation cohorts, respectively. Subgroup analysis revealed varying diagnostic efficacy across clinical T1 stages, with the highest efficacy in the T1a stage, followed by the T1b stage, and lowest in the T1c stage. CONCLUSION: The ITH score presents a superior method for evaluating histological subtypes and distinguishing LPA from other subtypes in clinical T1 stage lung adenocarcinoma presenting as pGGN.

14.
Eur J Pharm Biopharm ; 198: 114274, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561067

RESUMO

Amorphous solid dispersions (ASDs) using proteins as carriers have emerged as a promising strategy for stabilizing amorphous drug molecules. Proteins possess diverse three-dimensional structures that significantly influence their own properties and may also impact the properties of ASDs. We prepared ß-lactoglobulin (BLG) with different contents of ß-sheet and α-helical secondary structures by initially dissolving BLG in different mixed solvents, containing different ratios of water, methanol/ethanol, and acetic acid, followed by spray drying of the solutions. Our findings revealed that an increase in α-helical content resulted in a decrease in the glass transition temperature (Tg) of the protein. Subsequently, we utilized the corresponding mixed solvents to dissolve both BLG and the model drug celecoxib (CEL), allowing the preparation of ASDs containing either ß-sheet-rich or α-helix/random coil-rich BLG. Using spray drying, we successfully developed BLG-based ASDs with drug loadings ranging from 10 wt% to 90 wt%. At drug loadings below 40 wt%, samples prepared using both methods exhibited single-phase ASDs. However, heterogeneous systems formed when the drug loading exceeded 40 wt%. At higher drug loadings, physical stability assessments demonstrated that the α-helix/random coil-rich BLG structure exerted a more pronounced stabilizing effect on the drug-rich phase compared to the ß-sheet-rich BLG. Overall, our results highlight the importance of considering protein secondary structure in the design of ASDs.


Assuntos
Água , Temperatura de Transição , Celecoxib/química , Temperatura , Solventes , Solubilidade , Composição de Medicamentos/métodos
15.
ACS Appl Mater Interfaces ; 16(15): 18327-18343, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588343

RESUMO

58S bioactive glass (BG) has effective biocompatibility and bioresorbable properties for bone tissue engineering; however, it has limitations regarding antibacterial, antioxidant, and mechanical properties. Therefore, we have developed BGAC biocomposites by reinforcing 58S BG with silver and ceria nanoparticles, which showed effective bactericidal properties by forming inhibited zones of 2.13 mm (against Escherichia coli) and 1.96 mm (against Staphylococcus aureus; evidenced by disc diffusion assay) and an increment in the antioxidant properties by 39.9%. Moreover, the elastic modulus, hardness, and fracture toughness were observed to be increased by ∼84.7% (∼51.9 GPa), ∼54.5% (∼3.4 GPa), and ∼160% (∼1.3 MPam1/2), whereas the specific wear rate was decreased by ∼55.2% (∼1.9 × 10-11 m3/Nm). X-ray diffraction, high-resolution transmission electron microscopy, and field emission scanning electron microscopy confirmed the fabrication of biocomposites and the uniform distribution of the nanomaterials in the BG matrix. The addition of silver nanoparticles in the 58S BG matrix (in BGA) increased mechanical properties by composite strengthening and bactericidal properties by damaging the cytoplasmic membrane of bacterial cells. The addition of nanoceria in 58S BG (BGC) increased the antioxidant properties by 44.5% (as evidenced by the 2,2-diphenyl-1-picrylhydrazyl assay). The resazurin reduction assay and MTT assay confirmed the effective cytocompatibility for BGAC biocomposites against mouse embryonic fibroblast cells (NIH3T3) and mouse bone marrow stromal cells. Overall, BGAC resulted in mechanical properties comparable to those of cancellous bone, and its effective antibacterial and cytocompatibility properties make it a good candidate for bone healing.


Assuntos
Cério , Nanopartículas Metálicas , Prata , Animais , Camundongos , Antioxidantes , Células NIH 3T3 , Fibroblastos , Antibacterianos/farmacologia , Vidro
16.
J Conserv Dent Endod ; 27(3): 310-314, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38634034

RESUMO

Background and Aim: Teeth bleaching, although considered safe and conservative, cause microscopic changes in the tooth structure. The aim of this study is to evaluate the bleaching efficacy of carbamide peroxide (CP) bleaching gel when modified with the incorporation of bioactive glass (BG) and hydroxyapatite (HA) and its effect on enamel microhardness. Materials and Methods: Forty-five maxillary incisors were decoronated, artificially stained and mounted in acrylic. The samples were divided into three groups of 15 each and subjected to the following bleaching protocol for 8 h/day at 37°C for 2 weeks: Group 1 - 16% CP, Group 2 - CP modified with BG, and Group 3 - CP modified with hydroxyapatite (HA). Spectrophotometric color assessment using CIE L*a*b* system and Vickers microhardness were assessed before and after bleaching. Data were analyzed using Student's paired t-test and one-way ANOVA followed by Tukey's post hoc analysis. Results: There was a significant change in color (L*a*b*) in all the three groups when compared to the baseline values. However, no significant difference in the total color change (ΔE) was observed between the three groups. Enamel microhardness reduced significantly in the CP group, whereas it increased in the BG and HA group after bleaching. Scanning electron microscopy images of BG and HA groups showed crystalline deposits suggesting mineral deposition. Conclusion: Addition of biomaterials can be a beneficial alternative to bleaching with CP alone, considering the increase in microhardness without hindering the bleaching action.

17.
ACS Appl Mater Interfaces ; 16(15): 18874-18887, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568163

RESUMO

Sulfide-based solid electrolytes (SEs) are important for advancing all-solid-state batteries (ASSBs), primarily due to their high ionic conductivities and robust mechanical stability. Glassy SEs (GSEs) comprising mixed Si and P glass formers are particularly promising for their synthesis process and their ability to prevent lithium dendrite growth. However, to date, the complexity of their glassy structures hinders a complete understanding of the relationships between their structures and properties. This study introduces a new machine learning force field (ML-FF) tailored for lithium sulfide-based GSEs, enabling the exploration of their structural characteristics, mechanical properties, and lithium ionic conductivities. Using molecular dynamic (MD) simulations with this ML-FF, we explore the glass structures in varying compositions, including binary Li2S-SiS2 and Li2S-P2S5 as well as ternary Li2S-SiS2-P2S5. Our simulations yielded consistent results in terms of density, elastic modulus, radial distribution functions, and neutron structure factors compared to DFT and experimental work. Our findings reveal distinct local environments for Si and P within these glasses, with most Si atoms in edge-sharing configurations in Li2S-SiS2 and a mix of corner- and edge-sharing tetrahedra in the ternary Li2S-SiS2-P2S5 composition. For lithium ionic conductivity at 300 K, the 50Li2S-50SiS2 glass displayed the lowest conductivity at 2.1 mS/cm, while the 75Li2S-25P2S5 composition exhibited the highest conductivity at 3.6 mS/cm. The ternary glass showed a conductivity of 2.6 mS/cm, sitting between the two. Moreover, an in-depth analysis of lithium ion diffusion over the MD trajectory in the ternary glass demonstrated a significant correlation between diffusion pathways and the rotational dynamics of nearby SiS4 or PS4 tetrahedra. The ML-FF developed in this study provides an important tool for exploring a broad spectrum of solid-state and mixed former sulfide-based electrolytes.

18.
ACS Appl Mater Interfaces ; 16(15): 19094-19102, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38571376

RESUMO

Due to the spontaneous transport of small-sized cations and redox reactions under open circuit conditions, the currently reported coloring electrochromic devices (ECDs) may self-bleach easily. The resulting ECDs exhibit poor open-circuit memory, which limits their applications in static display advertisement. By constructing energy barriers to effectively control small-sized cation transport, the redox reaction could be suppressed, thereby inhibiting the self-bleaching of ECDs. In this study, phosphate glass is used as an electrolyte to construct high-energy barriers. Sodium ions in phosphate glass absorb external heat to cross energy barriers and become conductive charge carriers. In this case, the electrochromism of ECDs is allowed. On the contrary, after the absorbed heat energy is released, sodium ions are immediately trapped by oxygen ions in the PO4 unit, becoming frozen ions. At this point, the electrochromization of ECDs is prohibited. Based on the ionic conductive feature of phosphate glass, ECDs absorb heat and are colored by applying an electric field first. Then, ECDs release the thermal energy and the sodium ions transport in the electrolyte is blocked to cut off the self-bleaching pathway. The prepared inorganic all-solid-state ECDs maintained the colored state for several months using the method mentioned above, which solved the problem of the poor open-circuit memory of ECDs.

19.
Natl Sci Rev ; 11(4): nwae023, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560493

RESUMO

Zeolitic imidazolate frameworks (ZIFs) feature complex phase transitions, including polymorphism, melting, vitrification, and polyamorphism. Experimentally probing their structural evolution during transitions involving amorphous phases is a significant challenge, especially at the medium-range length scale. To overcome this challenge, here we first train a deep learning-based force field to identify the structural characteristics of both crystalline and non-crystalline ZIF phases. This allows us to reproduce the structural evolution trend during the melting of crystals and formation of ZIF glasses at various length scales with an accuracy comparable to that of ab initio molecular dynamics, yet at a much lower computational cost. Based on this approach, we propose a new structural descriptor, namely, the ring orientation index, to capture the propensity for crystallization of ZIF-4 (Zn(Im)2, Im = C3H3N2-) glasses, as well as for the formation of ZIF-zni (Zn(Im)2) out of the high-density amorphous phase. This crystal formation process is a result of the reorientation of imidazole rings by sacrificing the order of the structure around the zinc-centered tetrahedra. The outcomes of this work are useful for studying phase transitions in other metal-organic frameworks (MOFs) and may thus guide the development of MOF glasses.

20.
Heliyon ; 10(6): e28313, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38560674

RESUMO

The objective of this study was to develop functional date-pits by mold digestion for the potential use in food products. Whole date-pits (WDP) and defatted date-pits (DDP) were digested by mold Trichoderma reesei at 20 °C. T. reesei consumed date-pits as nutrients for their growth, and DDP showed higher growth of molds as compared to the WDP. The mold digested WDP and DDP samples showed an increased water solubility and hygroscopicity as compared to the samples prepared by autoclaved. This indicated that the mold digestion transformed date-pits to hydrophilic characteristics. Thermal analysis indicated a structural change at -3.2 °C for the untreated WDP and it was followed by a glass transition shift (i.e. onset: 138 °C and a specific heat change: 295 J/kg oC), and an endothermic peak at 196 °C with enthalpy of 68 J/g for the solids melting-decomposition. Similar characteristics were also observed for treated samples with the two glass transitions. The total specific heat changes for WDP, autoclaved-WDP, and digested-WDP were observed as 295, 367, and 328 J/kg oC, respectively. The total specific heat changes for DDP, autoclaved-DDP, and digested-DDP were observed as 778, 1329, and 1877 J/kg oC, respectively. This indicated that mold digestion transformed more amorphous fraction in the DDP. The energy absorption intensities of the Fourier Transform Infrared (FTIR) spectra for the selected functional groups decreased by the mold digestion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...